increase-retail-footfall
Main Blog, Retail

How to Increase Footfall in your Physical Outlets with Retail BI Dashboards (BIDs)

How to Increase Footfall in your Physical Outlets by Using Retail Intelligence Dashboards

To improve your business, you’d need to learn from your customers’ digital footprints. It can tell you exactly how much to spend and where.

Imagine you are the Brand Manager of a Fortune 500 automotive brand planning to penetrate a new market in Southeast Asia and to setup showrooms.

Anyone with rudimentary knowledge of the local market can tell you which areas all the luxury or affordable automobile showrooms are clustered. So, your first instinct might be to setup shop there, since that particular area is known for having a concentration of car dealerships.


While this isn’t a bad strategy, per se, but maybe we can do better. What if you had data on which income group your buyers belong to? That is certainly a useful piece of information. You could leverage that information to place your outdoor ads like billboards and roadshows, in affluent parts of town – to promote luxury automobiles from Germany, the UK, or the US.

And if you are selling competitively priced cars from Japan, you would probably want to place your showrooms, outdoor advertising, and promotional activities in the middle-income parts of town. Another consideration might be to figure out how far consumers are willing to travel to shop for cars. Does the distance have any impact on footfall?

increase-footfall-japan-point

The answer might surprise you.

Data-driven insights are not always intuitive, sometimes the truth can catch most battle-hardened marketers off-guard. For example, we recently found out through data analysis that a reasonably priced Japanese brand has more market share from the affluent parts of society, as opposed to the average Joe with a median salary. Seems counter-intuitive, but true, nonetheless.

When compared to this reasonably priced brand, higher-priced Japanese manufacturers have lower affluent market share and higher middle-income market share. In other words, middle- and lower-income groups prefer pricier cars when it comes to Japanese brands, and affluent groups prefer cars that are more reasonably priced!

Now let’s say the marketer has already established a presence in the region and has strategically placed showrooms at seemingly sensible locations. What can data do for them now? Or to be precise, how can data help them predict and plan for foot traffic?

With ADA’s proprietary telco-powered Data Management Platform (DMP), Xact, we are able to access footfall data from customers of all ages, demographics, interest groups, and beyond. It is a fairly large sample size with high variability and rich history, which we are able to leverage in the form of insights and predictions.

So, if you are trying to anticipate the volume of foot traffic on certain days and hours, certain locations, or even under specific weather conditions, we can create highly accurate simulations from machine learning and data-driven predictions.

Let’s consider a simpler use case.

Let’s say you want to market luxury hand-crafted Oxford shoes that are only affordable to the affluent segment. When you create a campaign strategy to increase footfall, it would definitely come in handy to know which malls they typically flock to when they plan to shop for shoes.

By pairing up consumer’s search history data, (example: “Oxford shoes”) and their actual physical location data, we can tell you which areas your most imminent customers are likely to be found.

increase-footfall-blog-oxford-shoes-market
increase-footfall-blog-oxford-shoes-marketing

For example, say you plan to increase foot traffic on October 10, 2019 – during the launch of your new line of formal shoes – where you can plan ahead if you know the time window between purchase intent and actual purchase, which could be several hours to several days, even several months in some cases.

Let’s say the window turns out to be three days before, i.e. we find out that people are most likely to search for shoes three days before they make the actual purchase.

Armed with this insight, you can place ads and launch promotional activities, in areas where your consumers are hanging out, both virtually and physically – three days ahead of October 10!

Seems a little futuristic? Why not take the system for a test drive?

We’re happy to show you a free demo!

The Tool

These insights were drawn from the ADA Retail Business Insights Dashboard (Retail BID), a suite of solutions that provides actionable insights for retailers to compare their market share, customer behaviour, and footfall against their competitors by a geographic area.

The dashboard allows retailers to zoom in to specific areas to track changes in trends, consumer demographics, and personas to ensure the best targeting for marketing and sales strategies. The dashboard includes data from automotive, mall, and petrol stations.

More about our Retail Business Insights Dashboards here. 

Leave a Reply

Your email address will not be published. Required fields are marked *